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In the paper are calculated the structural and elastic properties of TiC, TiN and TiO at high pressure by using a two-body 
interionic potential theory that includes the effect of Coulomb screening. The calculated values for the bulk modulus and 
elastic constants are mostly in very good agreement in experiments. There were also reported the second and third order 
elastic constants and second order pressure derivatives. They demonstrate the predominantly ionic nature of these 
compounds. It is predicted that at high pressures these compounds undergo a structural phase transition from the NaCl 
structure into the more dense CsCl atomic configuration.  
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1. Introduction 
 
The transition metal compounds (MX) where the M 

denotes transition metal element Ti and X denotes non-
metallic elements C, N and O, are refractory-metal 
compounds. The carbides and nitrides of Ti are ultra hard 
materials (compared to diamond) and crystallize in the 
rocksalt structure. Their high melting point, hardness, 
brittleness and metallic conductivity are common to all 
carbides and nitrides of the group IV and V transition 
metals [1]. It is interesting that the properties associated 
with covalent bonding are found in a set of systems which 
display a crystal structure normally associated with ionic 
bonding (NaCl). The type of bonding found for the MX 
systems is not typically ionic but as shown in ref.[2] more 
covalent and it occurs an ionic-like structure in 
combination with covalent-like. TiN is presently one of 
the most important materials for hardness and corrosion 
resistant coating material. Interest is also developing 
within the microelectronic industry for the use of TiN as 
an electrically conducting barrier. The relative position 
and degree of admixture of the 2s and 2p metalloid levels 
with the d and s transition-metal states play a decisive role 
in the binding. Several models favoring metal-metal or 
metal-nonmetal interaction have been proposed [3-5] to 
account for the trends in the properties of these 
compounds. The orbital overlap and the character of the d 
band in the transition metal oxides have been analyzed by 
Morin and Goodenough [6,7]. Other authors [5,8,9] have 
investigated the stability of the rocksalt structure in the 
hard metals, in particular the vacancy problem in TiO. The 
local-density approximation (LDA) within the density 
functional theory (DFT) has been used to calculate 
electronic and ground state properties of these compounds. 
This approach works for most systems like for the 3d 
transition metals, but it underestimates the bulk modulus 
[10,11]. To remove these drawbacks they proposed 
approximations referred to as PW91 [12]. This gives 

considerable improvement of the ground state properties 
of many atomic, molecular and solid-state systems [13]. 

This way Ozolins and Körling performed calculation 
based on full potential linear muffin-tin orbital (FPLMTO) 
method using PW91, for explaining the structural and 
cohesive properties of transition metals. Unfortunately 
there was a lack of elastic constants calculations using the 
GGA and was not concluded whether or not the GGA 
reproduce this quantity better than LDA. Fermi surface for 
the noble metals [14] using a full potential linear muffin-
tin orbital method (FP LMTO) within LDA was also 
calculated for further improvement. In this paper we made 
calculations based on the interaction theory with the 
purpose to continue to find to what extent two-body 
inter-ionic theory calculations improve the results for the 
structural and elastic properties of solid state systems. 

The study of the 3-D structure of these materials is an 
interesting and important step for understanding their basic 
properties. We have determined the equilibrium lattice 
constants, bulk moduli, and cohesive energies for these 
materials. Zhukov overestimated the equilibrium volumes 
for TiN, TiO and their calculated values of the bulk 
moduli for TiC and TiN are very large in comparison to 
experimental values. Price et al. [15] have studied the 
electronic structure, total energies, equilibrium lattice 
constants, bulk moduli and fracture properties of 
stoichiometric TiC using the full potential linear muffin-
tin orbitals (LMTO) method with LDA approximation for 
the exchange-correlation potential. Häglund et. al [16] 
have studied the bonding properties of transition metal 
carbides and nitrides. On the experimental side there are 
also a lot of recent efforts to study the hardness and elastic 
properties of TiN using different techniques such as 
Brillouin scattering and depth-sensing indentation [17], as 
well as by continuous indentation technique [18] and by 
line–focus acoustic microscopy [19]. The lack of data on 
the behaviour under high pressure motivated us to 
investigate the structural, elastic and high pressure 
properties of TiX compounds. 
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The rest of the paper is organized as follows. In sec. II 
we describe the details of the calculations and in sec. III 
we discuss our results for the 3-D structure, lattice stability 
and elastic constants of second and third order, inter-ionic 
distance with pressure, high pressure structural phase 
stability and shear modulus, young modulus, Poisson’s 
ratio discuss first time in this paper.   

 
 
2. Method of calculation 
 
The interionic potential for transition metal 

mononitrides compounds in the rigid ion approximation is 
expressed as [21]: 
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where, Zme is the modified ionic charge due to screening 
of 3d electrons of the transition metal ions. In eq (1) the 
first term is the long range Coulomb, second term 
represents the short range repulsive, third and fourth terms 
are the Van der Waals interaction energies, respectively. rij 
is the nearest neighbour separation between the ions; ri and 
rj are the ionic radii. Such an interionic potential has been 
found extremely useful in studying the structural and high-
pressure properties of several rare-earth pnictides [21-23]. 
The short range parameters b and ρ have been determined 
self consistently from bulk modulus, BT and the 
equilibrium condition 
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Here r0 is equilibrium lattice constant. Thermodynamically 
a phase transition is said to occur when changes in the 
structural details of the phase are caused by a variation of 
the free energy. These compounds transform from their 
initial NaCl to CsCl structure under pressure. The stability 
of a particular structure is decided by the minima of the 
Gibbs free energy, given by 
 

 G=U+PV-TS                                 (3) 
 
where, U is the internal energy (Eq.1) which at 0 K 
corresponds to the cohesive energy, S is the vibrational 
entropy at absolute T, pressure P, and volume V. The 
Gibbs free energies, GB1(r) for NaCl (B1), and GB2 (r’) for 
CsCl (B2) phases become equal at the phase transition 
pressure Pt at temperature 0 K. In the present paper, we 
have studied the high pressure properties of the B2 phase 
only and calculated the second order elastic (SOE) 
constants from the following expressions, derived from the 
interionic potential [eq. (1)]  as: 
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and, A1 = A12, B1 = B12, A2 = (A11+A22) and B2 = (B11+B22), 
are short range force constants and are expressed as: 
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where )(rijφ is the short range potential (last three terms) 
in eq (1) and V is the unit cell volume. The expressions for 
the third order elastic constants (TOEC) can be derived as 
follows  
                                
C111 = α [37.556 Zm

2 + C1 – 3A1 + ¼ (C2 – 3A2 – 9B2)] 
C112 = C166 = α [-4.786 Zm

2 + 1/8 (C2 - 3A2 – 3B2)]                 (8) 
C123 = C144 = C456 = α ( 2.717 Zm

2 )  
 
 
with C1(2) = A2

1(2) / B1(2). The expressions for the pressure 
derivatives of second order elastic constants can be 
derived from the combination of SOECs and TOECs 
constants may be evaluated for the two models and are 
calculated as   
 

dP
dB

 = - 1/3 (C111 + 6C112 + 2C123) / C11 + 2C12 

dP
dC44 = - (C11 + 2C12 + C44 + C144 + 2C166) / C11 + 2C12 (9) 

dP
dG

   = - ½ (3C11 + 3C12 + C111 – C123) / C11 + 2C12 

 
        The expressions for the shear moduli C44 or G can be 
written as 
 
                          C44 = G = (C11 – C12) / 2                       (10) 
 
Here, G represent the shear modulus and E is the Young 
modulus calculated using the formula 
 
               E = (C11-C12) (C11+2C12)/(C11+C12).            (11) 

    
We use these two relations to calculate the Poisson ratio    
    

             σ = C12 / (C11+C12).                                    (12) 
        
  

3. Results and discussion 
 
First we analyze the input crystal properties and 

model paramater of the binary transition metal carbides, 
nitrides and oxides, all results are shown in Table1. Our 
calculated values for the equilibrium lattice constants and 
bulk moduli BT for the TiC, TiN and TiO together with 
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experimental and theoretical values are summarized in Table 1. 
 

Table 1. Input crystal properties and model parameter for TiX compounds. 
 

Solids Input Parameters 
 
 r1+                    r2-              r0            BT            Zm

2 
(Ǻ)           (Ǻ)           (Ǻ)      (Mbar) 

 

Output Parameters 
   b                  ρ 
 (10-19J)                 (Ǻ) 

 
TiC 
 
TiN 
 
TiO 
 

 
1.13          1.03        2.16 2.42 2.55
 
1.13          0.99        2.12         2.88        3.24 
 
1.13          0.93        2.09         2.70        2.45 

 
0.854             0.206 
 
1.162             0.225 
 
0.998             0.200 

 
In Table 2 lattice constants in NaCl (B1) and in CsCl 

(B2) phases, cohesive energies, phase transition pressure 
and volumes are presented. The values of lattice constants 
and cohesive energies in NaCl structure indicate that these 
compounds are more stable in NaCl phase than in CsCl 
phase. The calculated values of transition pressures 
indicate that these transition metal nitrides (TMN), in 
general, transform to CsCl phase at a pressure 57 GPa, 126 
GPa and 79 GPa for TiC, TiN and TiO, respectively. The 
equation of state for transition metal compounds (TiC, TiN 
and TiO) have been calculated up to various pressure 
ranges and plotted in Fig. 1. N. A. Dubrovinskaia et al. 
[24] have observed a phase transformation from the NaCl 
type cubic structure (B1) to a rhombohedral structure at 
pressure above 18 GPa at 300 K under quasi-hydrostatic 
environment. This rhombohedral structure is the 
intermediate structure of NaCl (B1) to CsCl (B2). But the 
graph of TiC between relative volume (V/V0) vs pressure 
(GPa) shown in Ref. [24] does not satisfy us. This curve 
does not satisfy the accurate condition of phase 
transformation. We have calculated phase transition of 
TiC, TiN and TiO from cubic NaCl (B1) to CsCl (B2) 
phase under pressure of 57 GPa, 126 GPa and 79 GPa, 
respectively. 

Fig. 2 shows the variation of Ti-C, Ti-N and Ti-O and 
C-C, N-N and O-O distance with pressure for three 
compounds. In TiC the distance between Ti and C ion is 
2.17 Å at ambient pressure.  The Ti-C distance is slightly 
shorter than the sum of the atomic radius of Ti (2.00 Å) 
and atomic radius of C (0.91 Å), but longer than the sum 
of covalent radii of Ti (1.32 Å) and C (0.77 Å). Thus 
chemical bond between Ti and C atoms are predicted to be 
partially covalent in nature. At NaCl (B1) to CsCl (B2) 
transition pressure the Ti-C distance suddenly increases 
and becomes 2.27 Å in the CsCl phase. In the similar 
manner the distance between C-C ions first decreases with 
pressure but abruptly decreases at transition pressure in 
CsCl structure. The same analysis has been done for the 
other two compounds TiN and TiO and found satisfactory 
explanation. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Equation of state for TiC, TiN  and TiO. 
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Table 2. Cohesive and phase properties of TiX compounds 

 
 

Solids Equillibium lattice 
constant (Å) 

Cohesive energy (kJ/mole) Phase transition 
pressure (Pt) (GPa) 

Relative 
volume 
change % 

  R1(B1)  R2(B2) U1(B1)      U2(B2)    
TiC 
 
 
TiN 
 
 
TiO 
 

Present 
Expt. 
 
Present 
Expt. 
 
Present 
Expt. 
 

2.1798   2.2725 
2.16a 
 
2.1386   2.2519  
2.12a 
 
2.1077   2.2107 
2.09a 

-2616.2    -2544.6 
    
 
-3338.2     -3222.4 
 
 
-2597.2     -2517.1 
 

57 
 
 
126 
  
 
79 
 

9.6 
 
 
7.3 
 
 
9.0 

aRef. [14] 
 
The determination of the elastic constants requires the 

knowledge of the curvature of the energy curve as a 
function of strain for selected deformations of unit cell. 
Some of these deformations change the volume of the unit 
cell, but maintain the tetragonality symmetry, whereas 

other deformations break the tetragonality. The formulas 
and procedures for the calculations of the elastic constants, 
phase transition and Poisson’s ratios are given and 
discussed in this paper. 

 
 

Table 3. Calculated and experimental elastic constants (Mbar) of TiX compounds. 
 
 

Solids C11 C12 C44 BT 
 

 Expt Theo LDA Expt Theo LDA Expt Theo LDA Expt Theo LDA 
 

 
TiC 
 
TiN 
 
TiO 
 

 
5.13a 
 
6.25a 
 
- 

 
5.12 
 
5.37 
 
5.56 

 
6.06a 
 
7.35a 
 
6.93a 

 
1.06a 
 
1.65a 
 
- 

 
1.00 
 
1.44 
 
1.15 

 
1.06a 
 
0.93a 
 
0.73a 

 
1.78a 
 
1.63a 
 
- 
 

 
1.00 
 
1.44 
 
1.15 

 
2.3a 
 
2.5a 
 
1.3a 

 
2.42a 
 
2.88a 
 
2.70a 

 
2.38 
 
2.73 
 
2.62 

 
2.7a 
 
3.1a 
 
2.8a 

a Ref. [14] 
 

Our theoretical calculations of elastic constant Cij for 
binary compounds TiC, TiN and TiO compared to the 
LDA (GGA) and experiment are listed in Table 3. A 
comparison of the elastic constants with the experimental 
values is fairly limited. Since the bulk modulus is 
inversely proportional to the bond length, the smaller 
atomic size of carbon, nitrogen and oxygen and the shorter 

bond length in these materials cause the bulk modulus to 
be larger, and consequently the elastic constants, which in 
turn are related to hardness, are larger in this family of 
compounds. Our results show that the elastic constant C44 
is higher for TiN than for TiC and TiO. We see that our 
calculated theoretical values of the elastic constants are 
lower than the experimental and LDA values. 
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Fig. 2. Ti-Ti and Ti-X distance vs pressure curves for TiC, TiN and TiO. 
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Table 4. Third order elastic constants and pressure derivatives of second order elastic constants. 

 
 

Solids C111 C112=C116 C123=C144=C456 KP SP CP 
TiC   -42.337 -3.267 1.835 5.36 6.03 -0.22 
TiN   -32.083 -4.473 2.513 4.89 5.03 -0.06 
TiO   -45.546 -3.581 2.011 5.35 6.00 -0.14 

 
The requirement of mechanical stability in a crystal 

leads to the following restrictions on the elastic constants 
C11 - C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0. The elastic 
constants in Table 3 obey these stability conditions, 
including the fact that C12 must be smaller than C11. Our 
results show that the TM nitrides have a higher bulk 
modulus than that of corresponding carbide and oxide, and 
the higher hardness of TiC, TiN and TiO is still explained. 
As already shown, the study of the bulk modulus is 
insufficient for a determination of the hardness in TMs and 
their carbides, nitrides and oxides. Therefore, the elastic 

constant C can give indications on the hardness of these 
materials. 

We have also reported third order elastic constants 
and pressure derivatives of SOECs are reported in Table 4. 
Since the present study only emphasizes on two body 
interaction between the ions particularly in the absence of 
any experimental data, the refinement of interatomic 
interaction potential may be made whenever the elastic 
constants are measured for further insight into the various 
types of interaction in this group of solids.  

 
Table 5. Calculated experimental values of shear Modulus (G), Young Modulus (E) and Poisson’s ratio (σ). 

 
Solids G (GPa) E (GPa) σ 

 
TiC    Prest. 
          Voigt 
          Reuss 
          Expt. 
 
TiN    Prest. 
          Voigt 
          Reuss 
          Expt. 
 
TiO    Prest. 
              

 
206 
201a 
195a 
203d 

 
196 
216a 
201a 
230c 

 
220.5 

 
479.3 
488a 
477a 
442.5b 
 
476.1 
530a 
499a 
475c 
 
516.5 

 
0.16 
0.215a 
0.222a 
- 
 
0.21 
0.229a 
0.245a 
- 
 
0.17 

 
a Ref.[24], b Ref. [25], c Ref. [27], d Ref. [20] 

 
The data presented in this paper of shear modulus (G), 

young modulus (E) and Poisson’s ratio (σ) are summarized 
in Table 5. We know that for a perfectly incompressible 
material the Poisson’s ratio would be exactly 0.5. This 
allows to draw the conclusion that our materials are not 
much compressible. In the structural view, the reason for 
the usual positive Poisson’s ratio is that inter-atomic bonds 
realign with deformation. One more reason is that 
physically the materials must be stable. Like Ruess 
calculations of Poisson’s, our values more accurately 
specify that TiN is less compressible or more 
incompressible than other two TiC and TiO. The 
theoretically calculated σ of TiC, TiN and TiO are 0.16, 
0.21 and 0.17, respectively. The study of the shear 
modulus G reveals that TiN is hardest in these three 
materials. Our calculated G values of TiC, TiN (206 GPa, 
196 GPa, respectively) matched with the experimental 
values (203 GPa [27], 230 GPa [20], respectively). The 
calculated E values of TiC, TiN (479.3 GPa, 476 GPa, 

respectively) match with experimental values (442.5 GPa 
[26], 475 GPa [20], respectively). Similarly, we calculated 
the value of G, E and σ for TiO. 

 
4. Conclusions 
 
The calculated second and third order elastic constants 

and second order pressure dervivatives demonstrate the 
predominant ionic nature of the compounds TiC, TiN and 
TiO. At high pressure these compounds undergo a 
structural phase transition from NaCl-type structure vto 
the more dense CsCl-type structure. 
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